
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020 1

Corners for Layout: End-to-End Layout Recovery
from 360 Images

–Supplementary Material–
Clara Fernandez-Labrador∗1,2, Jose M. Facil∗1, Alejandro Perez-Yus1,

Cédric Demonceaux2, Javier Civera1 and Jose J. Guerrero1

Index Terms—Omnidirectional Vision, Semantic Scene Under-
standing

IN this supplementary document we give more details
about the network architecture of the proposed model. We

also provide more insights about equirectangular convolutions.
An extensive explanation about how to create the 3D layout
from the corners maps is presented as well. We dedicate also
one section to explain how we create the synthetic transla-
tions for the proposed robustness analysis. Furthermore, we
present an oracle evaluation of our method. We also provide a
video to present qualitative differences between using standard
convolutions or equirectangular convolutions in our model.
Finally, we show additional qualitative results in the SUN360
and Stanford 2D-3D datasets.

I. IMPLEMENTATION

Tables I and II show more details about the network
architecture and the differences between the two variants, the
first one with standard convolutions, StdConvs, and the second
one with Equirectangular Convolutions, EquiConvs. Notice
that the decoder uses ReLU as standard activation function
except for the prediction layers that use Sigmoid to obtain
the edge and corner maps. Prediction layers include those that
generate intermediate predictions, IP- in Tables I and II, and
the final output layer.

The blocks for the two models we present are:
CFL StdConvs: Uses the encoder and decoder convs. In this
case encoder uses the std-conv-block and std-id-block, see
Tables I and II.
CFL EquiConvs: Uses the encoder and decoder EquiConvs.

Manuscript received: September, 10, 2019; Revised November, 12, 2019;
Accepted January, 9, 2020.

This paper was recommended for publication by Editor Eric Marchand
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the Spanish government (project RTI2018-096903-B-I00
and project PGC2018-096367-B-I00), the Aragn regional government (Grupo
DGA-T45 17R/FSE) and the Regional Council of Bourgogne-Franche-Comt
(2017-9201AAO048S01342).

∗ Equal contribution
1 C. Fernandez-Labrador, J.M. Facil, A. Perez-Yus, J. Civera and J.J. Guer-

rero are with Instituto de Investigación en Ingenierı́a de Aragón (I3A), Uni-
versidad de Zaragoza, Zaragoza 50018, Spain {cfernandez, jmfacil,
alperez,jcivera,josechu.guerrero}@unizar.es

2 C. Fernandez-Labrador and Cédric Demonceaux are with VIBOT
ERL CNRS 6000, ImViA, Université Bourgogne Franche-Comté, France.
cedric.demonceaux@u-bourgogne.fr

Digital Object Identifier (DOI): see top of this page.

+

-

- +

Fig. 1: Effect of changing field of view α (rad) and
resolution r in EquiConvs. 1st column shows a narrow field
of view α = 0.2. 2nd column shows a wider kernel keeping
its resolution (atrous-like), α = 0.5. 3rd column shows an
even larger field of view for the kernel, α = 0.8. Notice how
the kernel adapts to the equirectangular distortion. Rows are
resolutions r = 3 and r = 5.

In this case encoder uses the equi-conv-block and equi-id-
block, see Tables I and II.

II. ATROUS EQUIRECTANGULAR CONVOLUTION

As presented in the paper we represent the kernel of
EquiConvs using two parameters, resolution (r) and field of
view (α). Although we use by default the same resolution
and field of view from the image in our model it can be
different. As we increase the resolution of the kernel, the
angular distance between the elements decreases, with the
intuitive upper limit of not giving more resolution to the kernel
than the image itself. In other words, the kernel is defined in
a sphere, being its radius less or equal to the image sphere
radius. EquiConvs can also be seen as a general model for
spherical Atrous Convolutions [2], [3] where the kernel size
is what we call resolution, and the rate is the field of view
of the kernel divided by the resolution. An example of the
differences of EquiConvs by modifiying α and r can be seen
in Figure 1.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

INPUT LAYER K S FUN CH OUTPUT

encoder
image conv+BN 7 2 ReLU 64 conv1
conv1 maxpool 3 2 - 64 pool

pool conv-block 3 1 ReLU 256 res2a
res2a id-block 3 - ReLU 256 res2b
res2b id-block 3 - ReLU 256 res2c

res2c conv-block 3 2 ReLU 512 res3a
res3a id-block 3 - ReLU 512 res3b
res3b id-block 3 - ReLU 512 res3c
res3c id-block 3 - ReLU 512 res3d

res3d conv-block 3 2 ReLU 1024 res4a
res4a id-block 3 - ReLU 1024 res4b
res4b id-block 3 - ReLU 1024 res4c
res4c id-block 3 - ReLU 1024 res4d
res4d id-block 3 - ReLU 1024 res4e
res4e id-block 3 - ReLU 1024 res4f

res4f conv-block 3 2 ReLU 2048 res5a
res4a id-block 3 - ReLU 2048 res5b
res4b id-block 3 - ReLU 2048 res5c

decoder convs
res5c upconv 5 2 ReLU 512 upconv4

res4f,upconv4 concat - - - - in3
in3 upconv 5 2 ReLU 256 upconv3

upconv3 upconv 3 1 Sigmoid 2 IP-1
res3d,upconv3,IP-1 concat - - - - in2

in2 upconv 5 2 ReLU 128 upconv2
upconv2 upconv 3 1 Sigmoid 2 IP-2

res2c,upconv2,IP-2 concat - - - - in1
in1 upconv 5 2 ReLU 64 upconv1

upconv1 upconv 3 1 Sigmoid 2 IP-3
conv1,upconv1,IP-3 concat - - - - in

in upconv 3 1 ReLU 64 upconv
upconv upconv 3 1 Sigmoid 2 output

decoder Equiconvs
res5c EquiConv 3 1 ReLU 512 equiconv4

equiconv4 unpool 2 2 - - unpool4

res4f,unpool4 concat - - - - in3
in3 EquiConv 3 1 ReLU 256 equiconv3

equiconv3 unpool 2 2 - - unpool3
unpool3 EquiConv 3 1 Sigmoid 2 IP-1

res3d,unpool3,IP-1 concat - - - - in2
in2 EquiConv 3 1 ReLU 128 equiconv2

equiconv2 unpool 2 2 - - unpool2
unpool2 EquiConv 3 1 Sigmoid 2 IP-2

res2c,unpool2,IP-2 concat - - - - in1
in1 EquiConv 5 1 ReLU 64 equiconv1

equiconv1 unpool 2 2 - - unpool1
unpool1 EquiConv 3 1 Sigmoid 2 IP-3

conv1,unpool1,IP-3 concat - - - - in
in EquiConv 5 1 ReLU 64 equiconv

equiconv EquiConv 3 2 Sigmoid 2 output

TABLE I: Network Architecture Details. Note that id-block
and conv-block can be either equi- or std- depending on the
version of the network (see Table II).

III. FROM CORNER MAPS TO 3D LAYOUT

Here we provide a further explanation of how the process
to go from 2D to 3D works. From the predicted 2D corner
positions, we can directly recover the 3D layout by doing the
following assumptions:

a) Soft Manhattan or Atlanta world. This is a relaxation
of the Manhattan World assumption whereby horizontal
directions are not necessarily orthogonal to each other.
That is, walls can intersect with each other in any
direction.

b) Ceiling-floor parallelism. Corners can be classified de-
pending on their position along the vertical direction
(above or below the horizon line, which in central panora-

INPUT LAYER K S BN FUN CH OUTPUT

std-conv-block
I std-conv-block k s - f N O
I StdConv 1 s f N/4 O2a

O2a StdConv k 1 f N/4 O2b
O2b StdConv 1 1 - N O2c

I conv 1 s - N O-1
O-1,O2c add 1 1 - f N O

std-id-block
I std-id-block k - - f N O
I StdConv 1 1 f N/4 O2a

O2a StdConv k 1 f N/4 O2b
O2b StdConv 1 1 - N O2c

I,O2c add 1 1 - f N O

equi-conv-block
I equi-conv-block k s - f N O
I EquiConv 1 s f N/4 O2a

O2a EquiConv k 1 f N/4 O2b
O2b EquiConv 1 1 - N O2c

I EquiConv 1 s - N O-1
O-1,O2c add 1 1 - f N O

equi–id-block
I equi-id-block k - - f N O
I EquiConv 1 1 f N/4 O2a

O2a EquiConv k 1 f N/4 O2b
O2b EquiConv 1 1 - N O2c

I,O2c add 1 1 - f N O

TABLE II: Blocks of the Network

mas is at the middle row) between ceiling and floor
corners respectively. Floor corners are on the same floor
plane and ceiling corners are directly above the floor ones.
The vertical direction is the normal direction of both floor
and ceiling planes.

c) Unitary camera height. This is trivial as results are up
to scale but needed to predict the total height of the room.

Taking all of this into account, we can define a plane as
the set of all points P = (x, y, z) such that P · N + d = 0,
where the normal N = (nx, ny, nz) is a normalized vector
perpendicular to its surface and d is the distance that separates
it from the origin of coordinates in the direction of the normal.
Due to assumptions b) and c), N of both the floor and ceiling
planes is equal and corresponds to the vertical direction, and
the distance d from the floor to the camera is known. The
distance to the ceiling is yet unknown.

Additionally, thanks to the nature of spherical images, we
can easily obtain the 3D ray R(t) = O+~V ·t (parametric repre-
sentation) going from the center of the sphere O = (ox, oy, oz)
through the corner position, with normalized direction vector
~V = (vx, vy, vz). To obtain the normalized direction vector ~V ,
we need the corner position in the sphere, thus we transform
the image coordinates of the corners (u, v) into spherical
coordinates and then to the Euclidean 3D space. Equations
for this can be found in Section 4.1. of the paper. In the first
place, Eq (1) (6, in the paper) give us the angles that define
the point (u, v) in the sphere.

φ = (u− W

2
)
2π

W
; θ = −(v − H

2
)
π

H
(1)

Where W and H are the width and height of the equirectan-
gular image. Second, once these rotations are known we can
compute the direction of the ray. Therefore, using Eq (2) (5,



FERNANDEZ-LABRADOR et al.: CORNERS FOR LAYOUT: END-TO-END LAYOUT RECOVERY FROM 360 IMAGES –SUPPLEMENTARY MATERIAL– 3

in the paper) we can calculate ~V .

~V =

− cos(θ) sin(φ)
sin(θ)

cos(θ) cos(φ)

 (2)

The intersection between the corner ray and the correspond-
ing floor or ceiling plane will give us the actual 3D corner
point P = (x, y, z) (up to scale), ie. the intersection represents
that point P on the surface of the plane that verifies the ray
equation: (ox+vx ·t)nx+(oy+vy ·t)ny+(oz+vz ·t)nz+d = 0.
The point P of intersection would simply be the result of
evaluating the calculated t, Eq (3), in the ray equation R(t).

t = −oxnx + oyny + oznz + d

vxnx + vyny + vznz
(3)

Let’s consider we have performed the operations to compute
one corner point on the floor plane, PF = (xF , yF , zF ). The
corresponding point on the ceiling plane (PC) will be on top
of it (ie. xF = xC and yF = yC). Therefore, we can use this
to compute tC , Eq (4), and thus the ceiling point:

tC =
(xF − ox)

vCx
(4)

where ~V C = (vCx , v
C
y , v

C
z ) is computed as in (2) with the

corresponding ceiling point in the image. Notice that with PC

we have the information we were missing to recover the ceiling
plane.

IV. SYNTHETIC TRANSLATIONS

To generate the synthetic translations we use the 3D layout
reconstruction from the ground truth. The idea is to obtain
the color values of each pixel in the new synthetic image,
with similar reasoning about ray to plane intersection that can
be found in Section III. For each pixel of this image we can
recover its spherical coordinates (see Eq. (1)) and the direction
of the ray emanating from the reference frame (see Eq. (2)). In
Fig. 2 we represent the point in the unitary sphere x′ and the
corresponding ray R′ on the translated reference frame. We
compute the intersection of the ray R′ and the ground truth
layout as a ray to plane intersection as explained in Section
III, specifically Eq. (3). To simulate the translation, the origin
of the sphere O′ will be set accordingly as O + t. Since the
layout has several planes and the ray could intersect more than
one, the closest point is always selected. Once we have the 3D
point X we can change its reference frame (ie. subtract t) and
project it back to the sphere before the translation to recover
its point x whose color value can be recovered by going back
to the original equirectangular image. We go through all the
pixels in the new synthetic image until it is completely filled
with color values. Since we only have the ground truth 3D
layout but not the complete 3D reconstruction, the objects
in the scene could appear deformed because of the change
in perspective if translations are too large. The effect of this
change in perspective was not noticeable for the translations
we applied, and it did not affect the results.

t
x

x'
X

Ground truth 3D Layout

R'

O

O'

Fig. 2: Generation of synthetic translated image from the
ground truth layout. Each point in the sphere in the new
reference (x′) takes the color from the projection of the 3D
intersection point X to the sphere in the old reference (x).

Test Method 3DIoU CE PESS PECS

% % % %

SUN360
CFL StdConvs 78.79 0.79 2.49 3.33

CFL EquiConvs 78.87 0.75 2.6 3.03
CFL Oracle 97.24 0.07 0.5 0.55

Std.2D3D
CFL StdConvs 65.13 1.44 4.75 6.05

CFL EquiConvs 62.83 1.33 4.89 6.07
CFL Oracle 97.39 0.07 0.48 0.54

smallest the best

TABLE III: Layout results on both datasets, training on
SUN360 data. SS: Simple Segmentation (3 categories): ceiling,
floor and walls [6]. CS: Complete Segmentation: ceiling, floor,
wall1,..., walln [4]. CFL -Convs is our method evaluated using
the output of our network with one type of convolution, CFL
Oracle represents our method when having a perfect corner
map from the neural network.

V. ORACLE CORNER MAPS

In order to better understand our pipeline performance, we
have decouple it into two parts. The CNN prediction and the
Layout estimation from corner maps. We have evaluated and
compared our pipeline with GT corner maps, i.e. we remove
the CNN and evaluate our layout recovery as if we would
have get perfect corner maps from the CNN. This gives us
an upper bound for the CNN prediction and tell us where are
we now w.r.t. this upper bound. In Table III we show these
numbers in two public datasets. We can see two things in this
table. 1) The second part of our pipeline, when having good
quality corner maps, CFL Oracle in the table, performs very
accurate. This means it is a good approach if we assume we
will have good corner predictions. 2) Making our networks
more accurate could improve around 20% our accuracy.

VI. CFL VIDEO

The aim of the supplementary video is to show, for each
tested panorama, the predictions obtained through our two
CFL models, StdConvs and EquiConvs, when each panorama
is rotated from 0◦ to 360◦ horizontally.

If we pay attention to both ends of the predictions (left and
right borders) we can see a meaningful difference between
both models, specifically when corners get closer to the
borders of the image.

With EquiConvs, we do not use padding when the kernel
reaches the border of the image since offsets take the points to



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

their correct position on the other side of the 360 image. This
allows the model to understand the continuity of the scene.
StdConvs, instead, by using zero-padding, do not consider
relationship between borders of equirectangular images.

This means that EquiConvs, working in a continuous spheri-
cal space, produce much more consistent predictions along all
the performed rotations, whereas StdConvs lose consistency
between left and right sides of the panoramas.

As a consequence of that, in most cases when corners
approach the borders, StdConvs predict these corners twice, at
both ends, and thus layout estimations are wrong. This effect
is highlighted in the video with red bounding boxes.

The supplementary video can be found here:
https://youtu.be/dKvsV Y iPaA

VII. QUALITATIVE RESULTS

Here we show additional qualitative results of our recovered
layouts in SUN360 and Stanford 2D-3D datasets.

Figures 3 and 4 collect examples in SUN360 dataset and
show indoor scenes with different geometries, not only cuboid
shapes. Figure 5 shows examples in Stanford 2D-3D dataset.
Panoramas in this dataset do not cover full view vertically
and the indoor scenes represent more challenging scenarios
like cluttered laboratories or corridors.

REFERENCES

[1] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic
Data for Indoor Scene Understanding. ArXiv, Feb. 2017. 7

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2018. 1

[3] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017. 1

[4] C. Fernandez-Labrador, A. Perez-Yus, G. Lopez-Nicolas, and J. J. Guer-
rero. Layouts from panoramic images with geometry and deep learning.
arXiv preprint arXiv:1806.08294, 2018. 3

[5] J. Xiao, K. Ehinger, A. Oliva, and A. Torralba. Recognizing scene
viewpoint using panoramic place representation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2695–2702, 2012. 5,
6

[6] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. Layoutnet: Reconstructing
the 3d room layout from a single rgb image. In Proceedings IEEE
Conference on Computer Vision and Pattern Recognition, pages 2051–
2059, 2018. 3

https://www.youtube.com/watch?v=dK_vsVYiPaA&feature=emb_logo


FERNANDEZ-LABRADOR et al.: CORNERS FOR LAYOUT: END-TO-END LAYOUT RECOVERY FROM 360 IMAGES –SUPPLEMENTARY MATERIAL– 5

Fig. 3: Layout predictions (light magenta) and ground truth (dark magenta) on the SUN360 annotation dataset [5]. Best viewed
in color.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

Fig. 4: Layout predictions (light magenta) and ground truth (dark magenta) for complex room geometries on the SUN360
annotation dataset [5]. Best viewed in color.



FERNANDEZ-LABRADOR et al.: CORNERS FOR LAYOUT: END-TO-END LAYOUT RECOVERY FROM 360 IMAGES –SUPPLEMENTARY MATERIAL– 7

Fig. 5: Layout predictions (light magenta) and ground truth (dark magenta) on the Stanford 2D-3D annotation dataset [1]. Best
viewed in color.


