

ituto Universitario de Investigació Ingeniería de Aragón ersidad Zaragoza

- [2] C. Zou, A. Colburn, Q. Shan and D. Hoiem. "Layoutnet: Reconstructing the 3D room layout from a single rgb image". CVPR 2018.
- [3] Y. Zhang, S. Song, P. Tan, and J. Xiao. "PanoContext: A whole-room 3D context model for panoramic scene understanding." ECCV 2014.

Acknowledgements

This work was supported by Projects DPI2014-61792-EXP, DPI2015-67275 (MINECO/FEDER), DPI2015-65962-R (UE) and by the Regional Council of Burgundy (CRB).

Encoder

We build our model over **ResNet-50** pre-trained on **ImageNet** dataset. - Residual networks allow to increase depth without increasing the number of parameters with respect to their plain counterparts. - Faster convergence due to the general low-level features learned from ImageNet.

Decoder

- We propose a **unique branch** for multi-tasking to reduce computation time and the number of parameters. - We introduce **skip-connections** between encoder and decoder.

Loss Functions

Pixel-wise sigmoid cross-entropy loss These maps have an extremely unbalanced distribution of edges and corners, so we introduce the **ponder factors** λ_1 and λ_0 . $\mathcal{L}_{Mi} = \lambda_1 (y_i (-$

Perceptual loss Apart from encouraging the output images $\,\hat{y}\,$ to match the target images $y\,$, we also encourage them to have **same feature representations**. $\mathcal{L}_P(y,\mathcal{I}) = ||\hat{\phi}_j(\mathcal{I}) - \phi_j(y)||_2^2$

PanoRoom: From the Sphere to the 3D Layout **Clara Fernández-Labrador^{1,2}**, José M. Fácil¹, Alejandro Pérez-Yus¹, Cédric Demonceaux², José J. Guerrero¹

Encoder-Decoder FCN Details

- We perform **preliminary predictions** in different resolutions which are concatenated.

$$-\log(S(\hat{y}_i))) + \lambda_0 ((1-y_i)(-\log(1-S(\hat{y}_i))))$$

Layout Recovery and Results

Layout Hypotheses Generation and Evaluation

We randomly sample corners to generate layout hypotheses following the Manhattan World Assumption. We include the possibility of **introducing new corners** for those cases that they are not visible due to the scene convexity or occlusions.

Finally we choose the best fitting solution with the **Edge and Corners Maps** obtained trough our FCN by the following function: $L^{Best} = \operatorname{argmax}(w_e \sum P_{edge}(L_E^h) + w_c \sum P_{corner}(L_C^h))$

FCN Evaluation

-96.2% accuracy on SUN360 dataset.

- -Able to generalize: 91.6% acc. on Stanford2D-3D dataset.
- -General Layouts: Not limited to box-type
- -Cleaner edges around the boundaries

3D Layout Evaluation

We outperform the State of the Art in all the metrics while being faster.

Dataset	\mathbf{Method}	$3 \mathrm{DIoU}(\%)$	CE (%)	\mathbf{PE}^{SS} (%)	\mathbf{PE}^{CS} (%)	Method	Computation Time (s)
SUN360	PanoContext [3] F-L C. <i>et al.</i> [1] LayoutNet [2]	67.22 - 74.48	1.60 - 1.06	4.55 - 3.34	10.34 7.26 -	PanoContext [LayoutNet [22 Ours	$ \begin{array}{cccc} 19] &> 300 \\ 2] & 44.73 \\ & 10.07 \\ \end{array} $
	Ours	76.82	0.79	2.59	3.13		
Stnfd.2D-3D	F-L C. <i>et al.</i> [1]	-	-	-	12.1	-	
	Ours	70.64	1.15	3.95	4.98		

Input Image with Reprojected 2D Layout

3D Model

